
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSEVIER Journal of Pure and Applied Algebra 111 (1996) 21-29 

An exterior product identity for Schur functions 

Andrej Broido 
Department of Mathematics, University of California. San Diego, La Jolla, CA 92093-0112, USA 

Communicated by J. Rhodes; received 15 April 1994; revised 5 April 1995 

Abstract 

Let A be a matrix in Mat,(k), where k is a commutative ring. Let A”Mat.(k) be the nth 
exterior power of Mat,(k) as an n2-dimensional free k-module. We present a coordinate-free 
characterisation of the Schur functions of (eigenvalues of) A, si(A), with 1 = (,I], _ . , &) E Z”: 

_+,“I+“-’ ,, ,,A’+-” = sl(A)A”-’ ,, ,,A ,,I 

This becomes the usual definition of the Schur functions when A = diag(nl, ,xn). A coordinate 
version of this identity was found earlier by A. Kilikauskas. We show how the “master identity” 
above may be used to derive new identities, and simplify the proofs of old identities involving 
Schur functions and linear recurrent sequences. We also discuss its place in algebra and Lie 
theory. 

1. Exterior product identity 

A Schur function is a symmetric polynomial which is a quotient of two alternating 

polynomials 

s~(x~,xz,.. .,x,) = det(x$+n-i)/det(x~-i)15ij5n, (1) 

where 1 = (11, . . . , A,) is a decreasing sequence of integers, ;1i > . . . 2 I, 2 0 [lo]. 

If xl,. _ . ,x, are eigenvalues of a generic n x II matrix A, one obtains a (scalar- 

valued) function, which is polynomial in the matrix elements and which we call a 
Schur function of A. We denote it sl(A), with sA(diag(xi,. . . ,x,)) given by (1). 

A. Kilikauskas [8] found that SA(A) satisfies the following identity: 

sl(A) = det((A”““-’ >jj>ldet((A”-‘)jj)lli,jIn. 
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The purpose of this note is to prove the exterior product identity (3) and to show that 

(2), its generalisation (5), Jacobi-Trudi (8) and three more identities involving hook 

Schur functions (6), (7), (9) are its immediate consequences: 

Theorem 1 (Exterior product identity (E.P.1)). Let A be a generic matrix whose en- 

tries are commuting indeterminates aV, 1 5 i,j < n. The relation between exterior 

products, 

A&+“-1 j, . . . ,, ,&+n-n _ -sn(A)A”-‘A~+AAI (3) 

holds as an identity in the Grassmann algebra of the free n2-dimensional module over 

Z[a;j] generated by the matrices Ekt with only one nonzero entry. 

The most obvious meaning of (3) is that the Schur function may be viewed as the 

determinant of the change of basis in the space of powers of a generic matrix A 

(An-’ , . . . , A,Z) - (Ail+"-l, . . . ,Ai+n-n). (4) 

Thus, SJ,(A) = 0 whenever AA]+“-‘, . , . , Ain+“-” are linearly dependent, except that the 

component of matrices satisfying A”-’ A . . . A A A I = 0 is removed. 

Expanding (3) in the basis & we get (2) with n arbitrary (distinct) pairs kjlj: 

Theorem 2. The Schur function sl(A) satishes the identity 

sn(A) = det((A’J+n-i )k,!, )/det((A”-‘)k,r, h<ij<n. (5) 

The identity (3) is related to the problem of expressing a general term of a linear 

recurring sequence as a linear combination of n - 1 arbitrarily chosen terms. This 

problem was treated by W. Scheibner in 1864 (see [2,9] and Sections 2 and 4 below), 

and (3) could have been discovered at that time, but it was not. Interpreting hook Schur 

functions as solutions to a generic linear recurrence, we obtain three consequences of 

E.P.I.: 

Theorem 3 (Hook Schur functions identity). 

SI = (-l)(‘)det(s(;,-i+~,l,-l))l~i,j<~, 

where s(~,~,-I) = (- ) 1 j-‘6_*,j_~,if_n+l~p~O. 

(6) 

Theorem 4 (Kilikauskas’ identity with hook Schur functions). For ei = Tr A’ A, and 
with the same convention on nonpositive arm lengths as in Theorem 3, 

S,J = det(s(n,-i+j,l”-,))/eele2 . . . e,_l. (7) 

Theorem 5 (Jacobi-Trudi identity). For hi = Tr S’A (where S’A : S’(V) + S’(V)) 

(8) 
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Theorem 6. For any 1 2 0, k 2 0, k 5 n, the Schur functions s1 = s(~~,,+QII) (A’ = 

(A I,...&-1), ~“=(&+I , . . . , A,,)) satisfy the relation ’ 

s(~f>P+r,w = 5(- l)j-ls(P,l,_,)s(l,,l+l_j,l,,), 
j=l 

In particular, for k = n andlor for p = 1 

w>P+o = ~~(-l)j-ls(p,l;‘)s(i~,i,,_i)’ s(,l’,[+l) = k( 
j=1 

-1: 

(9) 

2. Proofs 

Proof of Theorem 1. Since all polynomials in (3) have integer coefficients, it is suffi- 

cient to verify (3) on the (Zariski open) set of matrices with complex entries having no 

multiple eigenvalues, that is, for A = BDB-’ with D = diag(xt,. . . ,x,,), Xi # Xj, i # j. 

Let p be a representation of GE(n) acting upon Mat,(k) by conjugation: p(B)(A) = 
BAB-‘. GL(n) acts on the exterior powers of the vector space Mat,(k) by 

For k = n, i.e. for the nth exterior power of the n2-dimensional vector space, Mat,(k), 

and for any sequence of integers ~1,. . . , p,,, one has 

AP’ A.. ’ A Ap’ = A”p(B)(Dp’ A . . . A DPn >. (10) 

Since the invertible operator A”p(B) drops out from both sides of (3), this means that 

it is sufficient to prove (3) for diagonal matrices, in which case it reduces to definition 

(1) (the only nonzero coefficient is that of Et 1 A E22 A . . . A E,,). 0 

Proof of Theorem 2. Follows by expansion of (3) in the basis of exterior monomials 

Ek,l, A . . A &,r, for different sequences (kjZj)lQ<n. 0 

Proof of Theorem 3. By Cayley’s theorem, there is an expansion (cf. [6,9]) 

Ap+“-’ = ]$, cp,jA”-j. (11) 

The coefficients cp,j = cp,j(A) are obtained by Cramer’s rule: 

APfn--l ,, A”-’ j, . . .A”-i+’ AA”-i-’ A.. . r\A A] 

= (-l)j-‘cp,jAn-’ A... AAAI. 

’ If li’s are negative and/or not ordered, SJ, is defined by (3). 
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The powers on the left are (p, lj-‘, On-j) + 6, where ~5~ = n - i. By (3), 

c p,j = (-l)‘-‘S(p, 11-1)~ p > 0, 

(12) 

c p,j = a-p,j--13 -n+lIpFO. 

From now on, we define the hook Schur functions .s(~,~,-~) for -n + 1 5 p 5 0 as 

S(p,li-l) = (-l)‘-l~_p~_-l, -n + 1 5 p 5 0. 

For p = j11,12 - l,... ,A,, - n + 1, formula (12) yields 

‘&I+“-1 A.. . A A’“+“-” = det((-l)j-ls(n,_j+l,,,_l))An-l A . . . AA ~1, 

(13) 

(14) 

and the statement follows. As a byproduct we obtain a recursive expression for the 
power sums $/,(A) = Tr AP via hook Schur functions: 

j=l 

Proof of Theorem 4. Let A be the matrix of a linear recurrence 

uk+n = alukfn-1 + . . ’ + a,&, (16) 

that is, a row of a’s and a line of l’s under the main diagonal, e.g. for n = 3 

al a2 a3 

i ) 100. 
0 1 0 

The entries in the jth column of AP are solutions to recurrence (16) with initial values 
in the jth column of the identity matrix: 

(A’)v = u~~~_j, with uffli = 60, i = 1,. . . ,n, (17) 

the first row of AP thus b&g 

(A’)lj = Up+n-I = 2 Cp,iul;i_)i = ,$ Cp,idij = Cpj = (- l)j-lS(p,li-l ), 

and (note that (13) is still in force) 

(18) 

(AP)ij = U$,,_i = U[iLi+l)+n_l = (-l)j-‘s(p-i+l,lj-1). (19) 

In particular, the last nonzero entry on the diagonal of AP, 1 5 p 5 n, is (Ap)pp = 

(-l)Ws(,P) = (-l)P-‘e, = UP’ and all (AP)ti with k > p are equal to 0, since by 
OUT convention (13), for i > p, s(p_i+l,lt-l) = 8i_p_l,i_l = b~,-~. The denominator 
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of (21, * . . . al 1 
. . . 0 1 

det 

i ! . . . . . . . . . . . . = erez.‘.e,_l. 

a,_1 . . . 0 1 

0 . . . 0 1 

(The sign of the permutation i + n - i, 1 < i < n - 1, annihilates the signs coming 

from ai = (-l)‘-‘ei.) The numerator of (2);s - 

(A”‘+“-‘)jj = (-l)j-‘s(~,+n_i_j+l,~,-l, 

which after the substitution j ++ n -j + 1 yields det(s(li_i+j,rn-,)) = so . el . . . e,_l. 0 

Proof of Theorem 5. By (19), (AP)jr = (-l)“~(,_i+r,ro) = hp_j+l. For p = jLi +n - i, 

coefficient of El 1 A E2r A . . . A E,,l in the expansion of A2l+n-1 A . . . A Air,+“-” equals 

(We changed j H n - j + 1 as in the proof of Theorem 4.) In the expansion of 
‘#-‘A... A A A I, this coefficient is a determinant of the form 

* 1 I I 10 
= (-l)(Y), 

and the result follows. q 

Proof of Theorem 6. By (ll), Ap+‘+n = C/7,,(-l)j-1~~p,l,_‘y41fn+l-j. Substituting 

Apfl+” for A’k+n-k in (3), with & + n - k = p + 1+ n (i.e. & = p + I + k), we obtain 

=,~(-l)i-l,(p,l,_,~A”l+I-I A.. .Al+“+l-i. . . AAL 

=,~(-l)‘-l~(p,l,-~~y~~,~+~+l_j,~~~~fl-l A -*‘AA AI, 

changing I + k to 1, and dividing by the discriminant A”-’ A . . . A I gives the result. 
0 

3. Examples 

This section contains low-dimensional examples which are intended to serve as an 

independent verification of the formulas developed thus far. 

Recall that by the Jacobi-Trudi identity (see also the example for Theorem 6 below 

and (19) above) 

q2,1) = hh2 - A3 = ele2 - e3, 

s(~,~) = hz - hlh3 = eg - e163. 
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Example for Theorem 3 (identity (6)). For the shape b: 

(we used (13): S(O,O) = l,~(~,~) = 0). For the shape EL 

S(2,2) = - 

= q2,l)ql) - q2)qlJ). 

We check this result using the Pieri’s rule, s~s(,) = Es”, v being any partition 

“obtained by adding m boxes to the rows of A, with no two boxes in one column” 

[5, p.4551: 

q2,l)ql) = S(3,l) +q2,2)+ S(2,12), 

ql,l)Q) = S(3,l) + S(2,12), 

and subtraction gives s(2,2). 

Example for Theorem 4 (Kilikauskas’ hook Schur functions identity): 

s(2,‘)e1 = S(i_2+i,iZ-‘) S(i-2+2,12-Z) 

as required (since s(i) = ei). For ~(22) we obtain 

s(2,2)e1 - S(2_2+1,12-1) S(2-2+2,12-Z) 

which by Pieri’s rule is equal to 

6(4,1) + s(3,2) + s(3,1,1) + s(2,2,1)) - b(4,l) + s(3,1,1)) = s(3,2) + s(2,2,1). 

On the other hand, by the same rule SQ,~)S(~) = ~(3,2) + s(2,2,1), we are done. 

Example for Theorem 6. We want to check that for ~2) with n = 2, i.e. for the 

shape q , 
q2.2) = elql,2) - e2q0.2). 

Note that we used k = 1 (not k = n). (Attention: Subscripts (1,2) and (2,l) (or (0,2) 

and (2,O)) refer to different Schur functions). By the Jacobi-Trudi identity for ei [5, 

101, 

S(2,2) = 
e2--1+l e2--1+2 e2 e3 II 1 = 
e2-2+1 e2-2+2 el e2 

= ei, 

since e3 = 0 for n = 2. Now we calculate S(Q) and s(a,z) by the E.P.I.: 

S(i,2)A A I = A’+’ A A2 = 0, S(a,2jA Al = A1 AA2 = -A2 AA’ = -e2, 

and therefore 92,~) = ei . 0 - e2 . (-e2) = ei, as required. 
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4. Discussion 

Here we discuss the place of the exterior product identity in algebra and Lie theory. 

1. Nice properties of the E.P.I. which show up here and there suggest that we should 

view it not as an identity, but rather as the right definition of Schur functions. Another 

option is to treat it as a current version of the Jacobi-Trudi identity (“JacobiATrudi”). 

2. The polynomials cpj (i.e. the hook Schur functions (-l)j-isCp, ,,-I,) arise in 

various settings. Fulton and Lang [6] use identities with cp,j in conjunction with 

“Grothendieck Riemann-Roth” theorem [6, ILIII]. In [9], I applied these polynomi- 

als to the evaluation of linear recurrences on p processors. If one denotes a(X) = 

X” - Cy=, a$“-j, c(X) = Xp+‘-’ - c/“=, Cp,jX*-‘, and f(X) = Xdesff(X-I), then 

t(X) = (a”(X)-’ mod Xp) a”(X). (20) 

Since a”(X)-’ = CrshjXj this yields an expression of s(k,i,-~) in terms of ej and hi: 

p+j-1 

s(P,l~-‘) = kgo (--l)jfkekhp+j_l_k. (21) 

3. Formula (3) makes sense for any sequence of integers 21,. . . , A,,, even for negative 

and not ordered i’s; Cp,j with negative p may be calculated from recurrence (16), 

reverted: 

wt = -(~n-l/Gl)~k+l - (%-2/04k+2 - . . . - (~ll~n)~k+,-1 + (%&k+n, 

resulting in, e.g., S(_al,-i) = u-1 = (-l)juj_l/u, = (-l)“-‘ej_l/&. Interpretation: 

~~_~,i,-,) = (-l)“-‘Tr A”-j+l A*-’ = (-l)“-‘Tr A++l p*(A), 

where p is a standard representation of GL(n). 

4. Theorem 5 admits the following interpretation. Let the exterior monomials A 1 A. . . 

A A,,, act on If@“’ as antisymmetrized products 

0z sgn(e)&i 8 +. .cic Am. 
n 

For us = (l,O,..., 0), the first column of AP contains recurrence entries Uk = hk(A), 

AP(uo) = (hp, A,- I,. . . , hp-n+l 1 

and the exterior product of A’s assumes on vy the value 

A”+“-’ A . * . A A’nnf”-“(~~ 63 . . @ ~0) = det(hii-i+j)i<ij<n V,_1 A . ’ . A ~0, 

where uk is a vector consisting of k zeros, one 1 and n - k - 1 zeros. 

5. Since the formulation of E.P.I. is functorial, it may be conjectured that it holds 

in a wider Lie-theoretic context (e.g. for super or quantum versions of GL(n) [12]). It 

also seems plausible that the Weyl character formula [5, 151 is related to E.P.I. 
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6. Invariants for orthogonal and symplectic Lie algebras may be constructed using 

linear relations between even or odd powers of A, e.g. for 2n x 2n matrices 

A2(l’ --n+l) A . . . ,j A2L = f(A)A2(“-1) ,j . . . ,j A2 A 1. 

Invariants of m matrices (cf. [3]) AI, . . _ , A, may be obtained by picking m(n - 1) + 1 

factors from mn terms A”‘-“+’ 
J 

and expressing their exterior product as f(Al, . . . , A,) 

A;-’ A.. . /,A, AA;-’ ,‘, . . . /,A2.. .A;-,-’ . . . A,,, A I. It is not clear though whether these 

systems of invariants will be complete. 

7. A set-theoretic pattern beyond Schur functions is as follows: one has a set S with 

two maps, F : S - S, and W : S x .. . x S -+ T (n-fold product of S to T). A 

Schur function s)+(F) is then a morphism SQ : T - T, which transforms a map 

W o F”-* = W(F”l+“-l(s), . . , F”n+“-“(s)) : S -+ T to the map W o F’-” : 

S 

WOF’+~ 

/\ 

WOF”+~ 

J 
q&=) \ 

T +T 

(for p = 0, ~,Q(F) is what we denoted by sn(F)). 

8. Coefficients relating terms of linear recurrent sequences (cf. [2]), 

uk =diw,+n-1 + . ..+&%n+.-n 

are easily expressed in terms of Schur functions (Cram&r’s rule again): 

di = s(i I,..., ~,_,,k-n+i,i,+ ,,..., A,)/% 

9. It would be very interesting to find a version of E.P.1 for Schur-like func- 

tions with the Wronskian [4, 141 or Muir determinant [l, 7, 111 in the denominator 

(cf. (1)). 
10. It is hard to believe that the identities with hook Schur functions (Theorems 3 

and 4 above) were really unknown. Apparently, they were treated as consequences of 

the Jacobi-Trudi identity, from which they may be derived by row operations [ 131. 

Acknowledgements 

Many thanks to Prof. Jeffrey Remmel for the introduction to the results of his Ph.D. 

student A. Kilikauskas, for many helpful discussions, and for the statement of Theo- 

rem 4. I greatly benefited from discussions of this result with Prof. Nolan Wallach. 

Thanks to Prof. Ian G. Macdonald who assured me that E.P.I. has not attracted his 

attention before. I am indebted to Prof. Jeffrey Rabin, Noam Elkies and David Goss 

for discussions and references, and to William Brockman for his generous linguistic 

help. I am sincerely thanktil to Prof. Adrian0 Garsia, Dr. Ordjonika Koutina and Prof. 

Arkady Vaintrob for their help and encouragement. 



A. Broidol Journal of Pure and Applied Algebra Ill (1996) 21-29 29 

References 

[l] G. Anderson, Rank one elliptic A-modules and A-harmonic series, Duke Math. J. 73 (3) (1994) 491-542. 

[2] L.E. Dickson, History of the theory of numbers, Vol. I, Carnegie Institute of Washington, 1919. 

[3] S. Donkin, Invariants of several matrices, Inventiones Math. 110 (1992) 389401. 

[4] N. Elkies, private communication, March 1994. 

[5] W. Fulton and J. Harris, Representation Theory: A First Course (Springer, Berlin, 1991). 

[6] W. Fulton and S. Lang, Riemann-Roth Algebra (Springer, Berlin 1985). 

[7] D. Goss, Drinfeld modules: cohomology and special functions, in: U. Janssen, S. Kleitman and J.P. Serre, 

eds. Motives, Proc. Symp. in Pure Mathematics, Vol. 55 (American Mathematical Society, Providence, 

RI, 1994). 

[8] A. Kilikauskas, Symmetric functions of the eigenvalues of a matrix, Ph.D. Thesis, University of 

California, San Diego, 1993. 

[9] A.B. Kut’in, Complexity of preprocessing of recursive filters for running in parallel, Appl. Math. Lett. 

5 (1) (1991) 47-50. 

[ 121 Yu.1. Manin, Topics in Non-commutative Geometry (Princeton University Press, Princeton, NJ, 1991) 

[IO] I.G. MacDonald, Symmetric Functions and Hall Polynomials (Oxford Univ. Press, Oxford, 1979). 

[I l] I.G. MacDonald, Schur functions: theme and variations, Publ. IRMA Strasbourg, 498/S-28. Actes 28’ 

Seminaire Lotharingien (1992) 5-39. 

[13] J. Remmel, private communication (1994). 

[14] G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. IHES 61 (1985) 5565. 

[ 151 H. Weyl, Classical Groups (Princeton University Press, Princeton, NJ, 1939). 


